Unexpectedly uneven distribution of functional trade-offs explains cranial morphological diversity in carnivores

  • Foote, M. The evolution of morphological diversity. Annu. Rev. Ecol. Syst. 28, 129–152 (1997).

    Article 

    Google Scholar 

  • Jablonski, D. Approaches to macroevolution: 1. General concepts and origin of variation. Evol. Biol. 44, 427–450 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goswami, A., Smaers, J. B., Soligo, C. & Polly, P. D. The macroevolutionary consequences of phenotypic integration: from development to deep time. Philos. Trans. R. Soc. B Biol. Sci. 369, 2013054 (2014).

  • Wainwright, P. C. Ecomorphology: experimental functional anatomy for ecological problems1. Am. Zool. 31, 680–693 (1991).

    Article 

    Google Scholar 

  • Mahler, D. L., Revell, L. J., Glor, R. E. & Losos, J. B. Ecological opportunity and the rate of morphological evolution in the diversification of greater Antillean anoles. Evolution 64, 2731–2745 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Foote, M. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19, 185–204 (1993).

    Article 

    Google Scholar 

  • Schluter, D. Adaptive radiation along genetic lines of least resistance. Evolution 50, 1766–1774 (1996).

    Article 
    PubMed 

    Google Scholar 

  • Jablonski, D. Developmental bias, macroevolution, and the fossil record. Evol. Dev. 22, 103–125 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Collar, D. C. & Wainwright, P. C. Discordance between morphological and mechanical diversity in the feeding mechanism of centrarchid fishes. Evolution 60, 2575–2584 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Walker, J. A. A general model of functional constraints on phenotypic evolution. Am. Nat. 170, 681–689 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Higham, T. E. et al. Linking ecomechanical models and functional traits to understand phenotypic diversity. Trends Ecol. Evol. 36, 860–873 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Higham, T. E. et al. Speciation through the lens of biomechanics: locomotion, prey capture and reproductive isolation. Proc. R. Soc. B Biol. Sci. 283, 20161294 (2016).

    Article 

    Google Scholar 

  • Garland, T., Downs, C. J. & Ives, A. R. Trade-offs (and constraints) in organismal biology. Physiol. Biochem. Zool. 95, 82–112 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Muñoz, M. M. The evolutionary dynamics of mechanically complex systems. Integr. Comp. Biol. 59, 705–715 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • David Polly, P. Functional tradeoffs carry phenotypes across the valley of the shadow of death. Integr. Comp. Biol. 60, 1268–1282 (2021).

    Article 

    Google Scholar 

  • Polly, P. D. et al. Combining geometric morphometrics and finite element analysis with evolutionary modeling: towards a synthesis. J. Vertebr. Paleontol. 36, e1111225 (2016).

    Article 

    Google Scholar 

  • Alexander, R. M. The maximum forces exerted by animals. J. Exp. Biol. 115, 231–238 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mauro, A. A. & Ghalambor, C. K. Trade-offs, pleiotropy, and shared molecular pathways: a unified view of constraints on adaptation. Integr. Comp. Biol. 60, 332–347 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Burress, E. D. & Muñoz, M. M. Functional trade-offs asymmetrically promote phenotypic evolution. Syst. Biol. (2022).

  • Holzman, R. et al. Biomechanical trade-offs bias rates of evolution in the feeding apparatus of fishes. Proc. R. Soc. B Biol. Sci. 279, 1287–1292 (2011).

    Article 

    Google Scholar 

  • Holzman, R. et al. A new theoretical performance landscape for suction feeding reveals adaptive kinematics in a natural population of reef damselfish. J. Exp. Biol. 225, jeb43273 (2022).

  • Deakin, W. J. et al. Increasing morphological disparity and decreasing optimality for jaw speed and strength during the radiation of jawed vertebrates. Sci. Adv 8 (2022).

  • Corn, K. A., Martinez, C. M., Burress, E. D. & Wainwright, P. C. A multifunction trade-off has contrasting effects on the evolution of form and function. Syst. Biol. 70, 681–693 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Stayton, C. T., O’Connor, L. F. & Nisivoccia, N. M. The influence of multiple functional demands on morphological diversification: a test on turtle shells. Evolution 72, 1933–1949 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Dickson, B. V. & Pierce, S. E. Functional performance of turtle humerus shape across an ecological adaptive landscape. Evolution 73, 1265–1277 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Dickson, B. V., Clack, J. A., Smithson, T. R. & Pierce, S. E. Functional adaptive landscapes predict terrestrial capacity at the origin of limbs. Nature 589, 242–245 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Stayton, C. T. Biomechanics on the half shell: functional performance influences patterns of morphological variation in the emydid turtle carapace. Zoology 114, 213–223 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Hebdon, N., Polly, P. D., Peterman, D. J. & Ritterbush, K. A. Detecting mismatch in functional narratives of animal morphology: a test case with fossils. Integr. Comp. Biol. 62, 817–828 (2022).

    Article 

    Google Scholar 

  • Arnold, S. J. Performance surfaces and adaptive landscapes. Integr. Comp. Biol. 43, 367–375 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Arnold, S. J. Morphology, performance and fitness. Am. Zool. 23, 347–361 (1983).

    Article 

    Google Scholar 

  • Arnold, S. J., Pfrender, M. E. & Jones, A. G. The adaptive landscape as a conceptual bridge between micro-and macroevolution. In Microevolution Rate, Pattern, Process, 9–32 (Springer Dordrecht, 2001).

  • Jones, K. E., Dickson, B. V., Angielczyk, K. D. & Pierce, S. E. Adaptive landscapes challenge the “lateral-to-sagittal” paradigm for mammalian vertebral evolution. Curr. Biol. 31, 1883–1892.e7 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Taylor, G. & Thomas, A. Evolutionary Biomechanics: Selection, Phylogeny, and Constraint (OUP Oxford, 2014).

  • Morales-García, N. M., Gill, P. G., Janis, C. M. & Rayfield, E. J. Jaw shape and mechanical advantage are indicative of diet in Mesozoic mammals. Commun. Biol. 4, 242 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herrel, A., O’Reilly, J. C. & Richmond, A. M. Evolution of bite performance in turtles. J. Evol. Biol. 15, 1083–1094 (2002).

    Article 

    Google Scholar 

  • Swiderski, D. L. & Zelditch, M. L. Complex adaptive landscape for a “Simple” structure: The role of trade‐offs in the evolutionary dynamics of mandibular shape in ground squirrels. Evolution 76, 946–965 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dumont, E. R. et al. Selection for mechanical advantage underlies multiple cranial optima in new world leaf-nosed bats. Evolution 68, 1436–1449 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Goswami, A., Milne, N. & Wroe, S. Biting through constraints: cranial morphology, disparity and convergence across living and fossil carnivorous mammals. Proc. R. Soc. B Biol. Sci. 278, 1831–1839 (2010).

    Article 

    Google Scholar 

  • Wroe, S. & Milne, N. Convergence and remarkably consistent constraint in the evolution of carnivore skull shape. Evolution 61, 1251–1260 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Weisbecker, V., Goswami, A., Wroe, S. & Sánchez-Villagra, M. R. Ossification heterochrony in the therian postcranial skeleton and the marsupial–placental dichotomy. Evolution 62, 2027–2041 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Goswami, A. et al. Do developmental constraints and high integration limit the evolution of the marsupial oral apparatus? Integr. Comp. Biol. 56, 404–415 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fabre, A. C. et al. Functional constraints during development limit jaw shape evolution in marsupials. Proc. R. Soc B Biol. Sci. 288, 20210319 (2021).

  • Wroe, S., McHenry, C. & Thomason, J. Bite club: comparative bite force in big biting mammals and the prediction of predatory behaviour in fossil taxa. Proc. R. Soc. B Biol. Sci. 272, 619–625 (2005).

    Article 

    Google Scholar 

  • Michaud, M., Veron, G., Peignè, S., Blin, A. & Fabre, A.-C. Are phenotypic disparity and rate of morphological evolution correlated with ecological diversity in Carnivora? Biol. J. Linn. Soc. 124, 294–307 (2018).

    Article 

    Google Scholar 

  • Meloro, C. & Tamagnini, D. Macroevolutionary ecomorphology of the Carnivora skull: adaptations and constraints in the extant species. Zool. J. Linn. Soc. 196, 1054–1068 (2022).

    Article 

    Google Scholar 

  • Christiansen, P. & Wroe, S. Bite forces and evolutionary adaptations to feeding ecology in carnivores. Ecology 88, 347–358 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Westneat, M. W. Feeding, function, and phylogeny: analysis of historical biomechanics in labrid fishes using comparative methods. Syst. Biol. 44, 361–383 (1995).

    Article 

    Google Scholar 

  • Slater, G. J. & Van Valkenburgh, B. Allometry and performance: the evolution of skull form and function in felids. J. Evol. Biol. 22, 2278–2287 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Figueirido, B. et al. Constraint and adaptation in the evolution of carnivoran skull shape. Paleobiology 37, 490–518 (2011).

    Article 

    Google Scholar 

  • Tseng, Z. J. Testing adaptive hypotheses of convergence with functional landscapes: a case study of bone-cracking hypercarnivores. PLoS ONE 8, e65305 (2013).

  • Smith, S. M., Stayton, C. T. & Angielczyk, K. D. How many trees to see the forest? Assessing the effects of morphospace coverage and sample size in performance surface analysis. Methods Ecol. Evol. 12, 1411–1424 (2021).

    Article 

    Google Scholar 

  • Law, C. J. et al. Decoupled evolution of the cranium and mandible in carnivoran mammals. Evolution 76, 2959–2974 (2022).

    PubMed 

    Google Scholar 

  • McGhee, G. R. The Geometry of Evolution: Adaptive Landscapes and Theoretical Morphospaces (Cambridge Univ. Press, Cambridge, UK, 2007).

  • Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference. A Practical Information-Theoretic Approach, Vol. 2 (Springer, New York, NY, 2004).

  • Moen, D. S. What determines the distinct morphology of species with a particular ecology? The roles of many-to-one mapping and trade-offs in the evolution of frog ecomorphology and performance. Am. Nat. 194, E81–E95 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Alfaro, M. E., Bolnick, D. I. & Wainwright, P. C. Evolutionary consequences of many‐to‐one mapping of jaw morphology to mechanics in labrid fishes. Am. Nat. 165, E140–E154 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Losos, J. B. Convergence, adaptation, and constraint. Evolution 65, 1827–1840 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Wainwright, P. C., Alfaro, M. E., Bolnick, D. I. & Hulsey, C. D. Many-to-one mapping of form to function: a general principle in organismal design? Integr. Comp. Biol. 45, 256–262 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Koehl, M. A. R. When does morphology matter? Annu. Rev. Ecol. Syst. 27, 501–542 (1996).

    Article 

    Google Scholar 

  • Jack Tseng, Z. & Flynn, J. J. Structure-function covariation with nonfeeding ecological variables influences evolution of feeding specialization in Carnivora (2018).

  • Borstein, S. R., Fordyce, J. A., O’Meara, B. C., Wainwright, P. C. & McGee, M. D. Reef fish functional traits evolve fastest at trophic extremes. Nat. Ecol. Evol. 3, 191–199 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Cardini, A. & Polly, P. D. Larger mammals have longer faces because of size-related constraints on skull form. Nat. Commun. 4, 2458 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Cardini, A., Polly, D., Dawson, R. & Milne, N. Why the long face? Kangaroos and wallabies follow the same ‘rule’of cranial evolutionary allometry (CREA) as placentals. Evol. Biol. 42, 169–176 (2015).

    Article 

    Google Scholar 

  • Sakamoto, M., Ruta, M. & Venditti, C. Extreme and rapid bursts of functional adaptations shape bite force in amniotes. Proc. R. Soc. B Biol. Sci. 286, 20181932 (2019).

    Article 

    Google Scholar 

  • Slater, G. J., Dumont, E. R. & Van Valkenburgh, B. Implications of predatory specialization for cranial form and function in canids. J. Zool. 278, 181–188 (2009).

    Article 

    Google Scholar 

  • Oldfield, C. C. et al. Finite element analysis of ursid cranial mechanics and the prediction of feeding behaviour in the extinct giant Agriotherium africanum. J. Zool. 286, 171 (2012).

    Article 

    Google Scholar 

  • Figueirido, B., Serrano-Alarcón, F. J., Slater, G. J. & Palmqvist, P. Shape at the cross-roads: homoplasy and history in the evolution of the carnivoran skull towards herbivory. J. Evol. Biol. 23, 2579–2594 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meachen, J. A., O’Keefe, F. R. & Sadleir, R. W. Evolution in the sabre-tooth cat, Smilodon fatalis, in response to Pleistocene climate change. J. Evol. Biol. 27, 714–723 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jeffery, N. S., Sarver, D. C. & Mendias, C. L. Ontogenetic and in silico models of spatial‐packing in the hypermuscular mouse skull. J. Anat. 238, 1284–1295 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Segura, V., Cassini, G. H. & Prevosti, F. J. Evolution of cranial ontogeny in South American canids (Carnivora: Canidae). Evol. Biol. 48, 170–189 (2021).

    Article 

    Google Scholar 

  • Currey, J. D. Bones: Structure and Mechanics (Princeton Univ. Press, 2006).

  • Schlager, S. Morpho and Rvcg–shape analysis in R: R-packages for geometric morphometrics, shape analysis and surface manipulations. In Statistical Shape and Deformation Analysis 217–256 (Elsevier, 2017).

  • FL, B. Morphometric Tools for Landmark Data: Geometry and Biology (Cambridge Univ. Press, Cambridge, UK, 1991).

  • Fruciano, C. Measurement error in geometric morphometrics. Dev. Genes Evol. 226, 139–158 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schliep, K. P. Phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dumont, E. R., Piccirillo, J. & Grosse, I. R. Finite‐element analysis of biting behavior and bone stress in the facial skeletons of bats. Anat. Rec. Part A Discov. Mol. Cell. Evolut. Biol. Off. Publ. Am. Assoc. Anat. 283, 319–330 (2005).

    Google Scholar 

  • Cox, P. G., Rinderknecht, A. & Blanco, R. E. Predicting bite force and cranial biomechanics in the largest fossil rodent using finite element analysis. J. Anat. 226, 215–223 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bourke, J., Wroe, S., Moreno, K., McHenry, C. & Clausen, P. Effects of gape and tooth position on bite force and skull stress in the dingo (Canis lupus dingo) using a 3-dimensional finite element approach. PLoS ONE 3, e2200 (2008).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stayton, C. T. Application of thin-plate spline transformations to finite element models, or, how to turn a bog turtle into a spotted turtle to analyze both. Evolution 63, 1348–1355 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Marcé-Nogué, J., De Esteban-Trivigno, S., Escrig, C. & Gil, L. Accounting for differences in element size and homogeneity when comparing Finite Element Models: Armadillos as a case study MARCÉ-NOGUÉ ET AL.: STATISTICAL APPROACH OF FEA 2. (2016).

  • Attard, M. R. G. et al. Moa diet fits the bill: virtual reconstruction incorporating mummified remains and prediction of biomechanical performance in avian giants. Proc. R. Soc. B Biol. Sci. 283, 20152043 (2016).

    Article 

    Google Scholar 

  • Tsang, L. R. et al. Raptor talon shape and biomechanical performance are controlled by relative prey size but not by allometry. Sci Rep 9, (2019).

  • Van Heteren, A. H. et al. New Zealand’s extinct giant raptor (Hieraaetus moorei) killed like an eagle, ate like a condor. Proc. R. Soc. B Biol. Sci. 288, 20211913 (2021).

  • Attard, M. R. G. et al. Virtual reconstruction and prey size preference in the mid cenozoic thylacinid, Nimbacinus dicksoni (Thylacinidae, Marsupialia). PLoS ONE 9, e93088 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dumont, E. R., Grosse, I. R. & Slater, G. J. Requirements for comparing the performance of finite element models of biological structures. J. Theor. Biol. 256, 96–103 (2009).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • McHenry, C. R., Wroe, S., Clausen, P. D., Moreno, K. & Cunningham, E. Supermodeled sabercat, predatory behavior in Smilodon fatalis revealed by high-resolution 3D computer simulation. Proc. Natl Acad. Sci. USA 104, 16010–16015 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chamoli, U. & Wroe, S. Allometry in the distribution of material properties and geometry of the felid skull: why larger species may need to change and how they may achieve it. J. Theor. Biol. 283, 217–226 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Rohlf, F. J. & Corti, M. Use of two-block partial least-squares to study covariation in shape. Syst. Biol. 49, 740–753 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fruciano, C., Colangelo, P., Castiglia, R. & Franchini, P. Does divergence from normal patterns of integration increase as chromosomal fusions increase in number? A test on a house mouse hybrid zone. Curr. Zool. 66, 527–538 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nychka, D., Furrer, R., Paige, J., Sain, S. & Nychka, M. D. Package ‘fields’. URL (2015).

  • Hiemstra, P. & Hiemstra, M. P. Package ‘automap’. Compare 105, 10 (2013).

    Google Scholar 

  • Clavel, J., Escarguel, G. & Merceron, G. mvmorph: an r package for fitting multivariate evolutionary models to morphometric data. Methods Ecol. Evol. 6, 1311–1319 (2015).

    Article 

    Google Scholar 

  • Clavel, J., Aristide, L. & Morlon, H. A penalized likelihood framework for high-dimensional phylogenetic comparative methods and an application to new-world monkeys brain evolution. Syst. Biol. 68, 93–116 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Ishiguro, M., Sakamoto, Y. & Kitagawa, G. Bootstrapping log likelihood and EIC, an extension of AIC. Ann. Inst. Stat. Math. 49, 411–434 (1997).

  • Kitagawa, G. & Konishi, S. Bias and variance reduction techniques for bootstrap information criterion. Ann. Inst. Stat. Math. 62, 209–234 (2010).

  • Pennell, M. W. et al. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30, 2216–2218 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Venditti, C., Meade, A. & Pagel, M. Multiple routes to mammalian diversity. Nature 479, 393–396 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Castiglione, S. et al. A new method for testing evolutionary rate variation and shifts in phenotypic evolution. Methods Ecol. Evol. 9, 974–983 (2018).

    Article 

    Google Scholar 

  • Revell, L. J. Size-correction and principal components for interspecific comparative studies. Evolution 63, 3258–3268 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Plummer, M., Best, N., Cowles, K. & Karen, V. CODA: convergence diagnosis and output analysis for MCMC. R. N. 6, 7–11 (2006).

    Google Scholar 

  • Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. R. J. 8, 289–317 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chatterjee, S. A new coefficient of correlation. J. Am. Stat. Assoc. 116, 2009–2022 (2021).

    Article 
    MathSciNet 
    CAS 

    Google Scholar 

  • link